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Abstract. To achieve better software quality, to shorten software development time and to lower
development costs, software engineers are adopting generative reuse as a software design process.
The usage of generic components allows increasing reuse anddesign productivity in software en-
gineering. Generic component design requires systematic domain analysis to identify similar com-
ponents as candidates for generalization. However, component feature analysis and identification
of components for generalization usually is donead hoc. In this paper, we propose to apply a data
visualization method, called Multidimensional Scaling (MDS), to analyze software components in
the multidimensional feature space. Multidimensional data that represent syntactical and semantic
features of source code components are mapped to 2D space. The results of MDS are used to parti-
tion an initial set of components into groups of similar source code components that can be further
used as candidates for generalization. STRESS value is usedto estimate the generalizability of a
given set of components. Case studies for Java Buffer and Geom class libraries are presented.

Keywords: component based software engineering, feature engineering, domain analysis, software
similarity, generalization, multidimensional scaling

1. Introduction

Component-based software engineering (CBSE) aims at decreasing software development costs and
time-to-market by building software systems from prefabricated building blocks (components) [1]. CBSE
focuses on software reuse, i.e., the use of existing artifacts for the construction of software. Reuse cannot
be achieved without some form of generalization [2].
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Generalization is a form of knowledge representation that means a transition from narrow and spe-
cific principles and concepts to the wider and more general ones. A higher, more generalized, level of
domain knowledge encapsulates an understanding of the general properties and behavior possessed by a
subset of its domain entities. Introduction of generalization usually means transition to the higher level
of abstraction, where domain knowledge can be represented and explained more comprehensibly and
effectively. Thus, generalization allows introducing more simplicity into the domain. In computer sci-
ence, generalization is usually understood as a technique of widening of an object (component, system)
in order to encompass a larger domain of objects (systems, applications) of the same or different type.
Generalization is mainly used for developing reusable software components and reuse libraries [3, 4, 5].

A prerequisite for generalization is to identify similarity (other terms used in the literature are com-
monality, resemblance, proximity) among a set of domain entities. The commonality may refer to essen-
tial features of a software component such as attributes or behavior, or may concern only similarity in
description, code repetition, duplication, cloning or redundancy. Commonalties may be introduced into
programs for a variety of reasons such as rapid software development using copy-and-paste technique,
reuse of widely used code fragments for reliability, poor design practices orad hocmaintenance. Thus,
separation and identification of common and variable concerns in the domain is a step towards achieving
generalization.

Program similarity and its detection is a core concept in software evolution and maintenance [6, 7],
code clone and redundancy detection [8, 9], program compression [10], malware analysis [11], plagia-
rism and copyright infringement detection [12, 13], and legacy system reengineering [14, 15]. Program
similarity is also important for solving library scaling problem [16]. Discovering and understanding pro-
gram similarity allows for efficient development of new component architectures and systems [17] and
for well-organized maintenance of existing systems [18].

Exploiting similarity and managing differences (variability) in software a key success factor in soft-
ware product lines [18]. A key aspect of software similaritymanagement is the discovery, explicit repre-
sentation and modeling of similarity. Similarity reveals itself on different stages of software development
process such as requirement formulation (e.g., feature models), automated application development (e.g.,
program generators, metaprograms [19]), system architectures (e.g., design patterns), implementation
constructs (e.g., templates, parameters). However, thereis still lack of understanding among software
developers that all these aspects of program similarity arerelated and must be managed explicitly.

Program similarity can be defined in terms of the form, properties or characteristics of program rep-
resentation. Here program representation is understood asa sequence of source code characters forming
a more complex text structure. We distinguish between textual, characteristics-based, feature-based and
information-based similarity:

• Textual similaritycan be evaluated using string comparison measures such as Levenshtein distance
or longest common sequence (for a review, see [9]).

• Characteristics-based similarityevaluates abstract characteristics of source code such as line count,
McCabe’s cyclomatic complexity, or Halstead metric [20, 21].

• Feature-based similarityevaluates the amount of correspondence between specific aspects of pro-
grams such as the list of identifiers [22] or business elements [23].

• Information-based similarityevaluates the amount of information shared between two programs
using information-theoretic metrics such as Kolmogorov complexity [24] or conditional entropy.
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Another taxonomy of program similarity types can be found in[25]. Similarity also can be explored
along different ”levels” of abstraction, which correspondto the levels of abstraction in programs. For
example, we could examine similarity at statement, block, class, unit, or architectural levels.

A family of similar components can be generalized into a generic component. Members of such
family share the same commonalities and have the related variability. The usage of generic components
increases reuse and design productivity in software engineering, because specific components can be de-
rived at any time by specialization or instantiation. The success of generalization and generic component
design largely depends upon domain analysis.

Several domain analysis methods, in one way or another, consider component generalization such as
Multi-Dimensional Separation of Concerns [26], FODA [27] or FAST [28] (for a review, see [29]). The
common aim of domain analysis methods is to construct or improve a reusable (generic) component, or to
populate reusable component libraries. All these domain analysis methods perform analysis for general-
izationad hoc. The designer analyzes available components or/and designspace, builds feature/concern
tables, separates commonalities and variabilities, and uses the results of analysis for developing generic
components. The analysis process is heuristic. Given the same set of components, other designers can
select other components and features for generalization. No evaluation is given on the quality of selected
partition of a component set and the extent of generalization.

The novelty of this paper is as follows. We propose to use a mathematical method, called Mul-
tidimensional Scaling (MDS), for visualizing multidimensional software component feature space and
identifying clusters of similar components as candidates for generalization.

The remaining parts of the paper are as follows. Section 2 formulates the main problems of compo-
nent analysis for generalization. Section 3 presents a brief description of the MDS method. Section 4
describes application of MDS for component analysis. Section 5 presents the experimental validation of
the approach for Java Buffer and Geom libraries. Finally, Section 6 presents the evaluation of results and
conclusions.

2. Main problems of component analysis for generalization

We formulate the main problems of component analysis for generalization as follows:

1. How to identify similar components amongst the available set of components?Generic compo-
nents capture commonalities in the domain. The more there are similarities between the gener-
alized components, the better generalization can be achieved, which ultimately allows for better
component reuse, library scaling and maintenance.

2. How many generic components we should design?We can design one large generic component,
which generalizes all available components for generalization and has many different parameters.
However, such generic component may be difficult to comprehend and to handle, and it may be
over-generalized. Alternatively, we may design several smaller generic components, which better
capture commonalties in a domain, and are more scalable and dependable.

3. How to partition a set of components into subsets, each for every generic component?Different
partitioning of a component set may lead to different quantity of generic components developed
and may increase or decrease the designer’s effort for generalization. Unsuccessful partitioning
may lead to unsuccessful generalization and un-usable (un-reusable) generic components.



www.manaraa.com
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4. How to determine a set of parameters for generalization of components?Different software com-
ponents may have distinct features. The generic component must reflect all features of the com-
ponents it generalizes. Smaller number of parameters meansbetter comprehensibility and easier
maintenance, and leads to higher reusability.

5. How to separate dependable and undependable parameters of generic components?The depen-
dency relationships between parameters may be a problem forthe designer. They can be difficult to
identify and the available metalanguage (i.e., a language used for describing generic components)
may not support specification of dependant parameters.

6. How to measure the extent of generalization?Several metrics can be used to measure the extent
of generalization such as: the number of generic parameters, the number of instances that can
be generated from a generic component, or the amount of generated code [30]. Though all these
metrics may be useful, they do not take thequality of generalization into account. If a generic
component has too many generic parameters, it may cause the over-generalization problem. Not
all generated instances may be required or useful. Much of the code generated from a generic
component may be redundant. Thus, there is a need for a metricthat describes the extent of
generalization and is domain-independent.

The existing domain analysis methods do not provide a comprehensible solution to these problems.
Thus, a combination of various, usually heuristic, methodsis usually used. Component similarity is
usually determined heuristically, based on their ”look-alikeness” [31]. The partitioning of a set of initial
components for generalization is often described as ”library scaling” problem [16]. Some authors prefer
a small number of large, ”coarse-grained” generic components [32], while others argue that better reuse
can be achieved using a large number of small, flexible, more widely applicable ”fine-grained” generic
components [33]. The parameters of a generic component and their relationships are modeled using
feature models [34, 19]. The success of generalization is evaluated by measuring the reuse metrics of the
developed generic components [35], which in many cases may be meaningless or uninformative.

We argue that the MDS method can be used as a step towards the solution of these domain analysis
problems. In next Section, we present a brief introduction into the MDS method.

3. Introduction to Multidimensional Scaling

Multidimensional Scaling (MDS) [36, 37] is a mathematical method to map complex multidimensional
data into lower-dimensional space, which allows easier analysis of data. MDS is used in the similar
context to analyze and visualize document collections [38], databases [39], web pages [40], as well as
for document categorization [41], text mining [42], knowledge discovery [43] and clustering software
for change [44].

Suppose we, have a set of objects characterized by a number offeatures and that a measure of the
similarity between objects is known. This measure indicates how similar or dissimilar two objects are.
Since the number of object features can be very large, such data can be very difficult to analyze and
visualize, unless the data can be represented in a smaller number of dimensions. Some sort of dimension
reduction is usually necessary.

MDS maps the high-dimensional data into a lower-dimensional space, in which each object is repre-
sented by a point and the distances between points resemble the original similarity information; i.e., the
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larger the dissimilarity between two objects, the farther apart they should be in the lower dimensional
(usually 2D) space. A mapping from a multidimensional spaceto a 2D space ensures some similarity be-
tween the structure of an original data and of its image. Thisgeometrical configuration of points reflects
the hidden structure of the data and may help to make it easierto understand.

Further, we consider only metric MDS, in which distances between objects in multidimensional
space are related to their dissimilarities linearly. Dissimilarity between elements in a vector space can be
measured by a norm of their difference, i.e. by a distance between the corresponding points.

Let Xi ∈ Rn, i = 1, .., k be the data intended to visualize. We are searching for a set of two
dimensional pointsYi ∈ R2, i = 1, .., k whose inter-point distancesdij(Y ) well approximate the inter-
point distancesδij = ‖Xi − Xj‖.

A distance in the multidimensional original space can be considered as a measure of dissimilarity,
and it is defined by a corresponding norm. The most widely usednorm is the Euclidean norm defining
distance betweenXi andXj by the formula

δij =

√

√

√

√

k
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(xir − xjr)2 (1)

whereXi = (xi1, .., xin)T .
The Minkowski metric is a generalization of the Euclidean metric. The corresponding distance is

defined by formula:

δij = 

k
∑

r=1

|xir − xjr|
p


1

p (2)

A special case of Minkowski metricp = 1 is the so called City Block metric:

δij =
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A mapping is precisely preserving the structure of a data set, if the distances between the original
points and the distances between their lower-dimensional images are equal. Practically, we want to
minimize an error of approximation of the distances in the original space by the distances in the lower-
dimensional space. This error is estimated by a measure of goodness-of-fit, often called ”stress”, between
the configuration distancesdij and the dissimilarities. A range of formulas for this measure is used:
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whereωij ≥ 0 are weights.
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There is no definite rule to determining, which stress value can be judged as representing good or
poor goodness-of-fit. Kruskal [45] provided the following ”rules-of thumb” for STRESS1 values as
follows: 0 – perfect, 0.025 – excellent, 0.05 – good, 0.1 – fair, > 0.2 poor.

In next Section, we describe the application of MDS for analyzing multidimensional component
feature space and uncovering clusters of similar components for generalization.

4. Component domain analysis for generalization based on MDS

First, we begin with some basic definitions as follows:
Definition 1: Componentcj is an object uniquely characterized by a set of its featuresF . Component

can be represented as a point in a n-dimensional feature space F as follows:

cj = (fi, f2, .., fn), fi ∈ F, cj ∈ C (7)

Definition 2: Featurefi is a computable metric of a componentcj :

fi = ‖cj‖ (8)

Definition 3: Similarity between two componentsci andcj is defined as a distanceδ between two
points in a multidimensional feature space:

δ(cj , ck) =

√

√

√

√

m
∑

r=1

(fir − fjr)2 (9)

Definition 4: Cluster of componentsK is a group of similar components separated by a small
distance.

K = {cj , .., ck}, δ(cj , ck) ≤ const (10)

for each pair of components in clusterK.
Definition 5: Generalizabilityg of a set of componentsC is evaluated using a stress criterion.

g = stress(C) (11)

We propose the following procedure based on the applicationof the MDS method for performing
analysis of components for generalization and identifyinggroups (clusters) of similar components as
prime candidates for generalization:

1. Identify a set of componentsC available for generalization.

2. Identify a set of featuresF of each component. The features may be extracted from component
source code, feature models or domain business models (ontology, thesaurus) using visual inspec-
tion, domain analysis tools (e.g., parsers) and may includesyntactical features that characterize
the source code of components or semantic features that characterize the functionality (behavior)
of a component.

3. Build a component feature matrixM (component× feature). The feature matrix must include at
least 6 features. It represents a set of points in a multidimensional feature space.
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R. Damaševičius / Analysis of Components for Generalization using Multidimensional Scaling 513

Table 1. Summary of Buffer class library

Level Feature dimension Features No. of classes

1 buffer data element type byte, char, int, float double, long, short 7

2 memory allocation scheme direct, non-direct 35

byte ordering native, non-native, Big endian, Little endian

3 access mode writable, read-only 32

4. Digitize a feature matrix. The numerical values for natural language descriptions of features, if
any, must be provided.

5. Select a distance metricδ (see Eq. 9) to measure the dissimilarity between componentsin compo-
nent feature space. Commonly used metrics are Euclidean (Eq. 1), Minkowski (Eq. 2) and City
Block (Eq. 3), though there are others, too.

6. Select a stress criterion (see Eq. 4, 5 or 6) that estimatesthe error of the mapping between the
multidimensional feature space and its 2D image.

7. Perform MDS on a feature matrix to obtain its 2D projectionand a stress value.

8. Identify clusters in the 2D projection. Identification isusually performed by visual inspection of
the 2D projection.

9. Use clusters of components to build generic components. The number of identified clusters deter-
mines the number of generic components.

10. Evaluate generalizability using stress value. Smallerstress value means more successful partition-
ing of the initial component set into clusters of similar components and, consequently, provides
more capabilities for generalization.

In the following Section, we present the experimental validation of the proposed MDS-based com-
ponent analysis framework.

5. Experimental validation of the proposed method

5.1. Java Buffer library

Buffer library is a part of JDK 1.5 class library (package java.nio.*). Buffer library contains 74 classes
describing different buffers. Below, we briefly describe features of the Buffer classes and explain how
those features are reflected in Buffer classes (for a more extensive description, see [46]). The class
hierarchy of the Buffer library is organized in 3 levels as follows (Table 1):

• At Level 1, there are 7 classes that differ in buffer element data types. These classes contain
methods for providing access to buffer functionalities implemented in the classes at Level 2.

• At Level 2, classes implement 2 memory allocation schemes (direct, non-direct) and 4 types of byte
orderings (native, non-native, Little Endian and Big Endian). 20 classes result from combining
memory access and byte ordering features, excluding MappedByteBuffer class, which is just a
helping class. Also there are 7 heap classes that implement the non-direct memory access scheme
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for a buffer. Classes with suffixes ’U’ and ’S’ implement direct memory access scheme with
native and non-native byte ordering, respectively. There is only one class DirectByteBuffer, as
byte ordering does not matter for byte buffers.

• At Level 3 in the class hierarchy, classes implement different access modes. In total, 25 classes at
Level 3 implement the read-only variants of buffers.

The Buffer library contains many ”look-alike” components and has a great deal of redundancy. It is
difficult to manage and maintain. Also component selection and reuse is difficult. Developing a smaller
number of generic components, which allows for easier classselection via parameters, more convenient
maintenance and elimination of unnecessary redundancy, thus contributing to higher reusability, can
solve these problems. However, the Buffer library components have multiple features alongside many
dimensions, their features depend upon each other, and thusthe partitioning of components for general-
ization is not an easy task. We formulate our aim as the identification of clusters of similar component
that are most susceptible for generalization, thus alleviating the work of a generic components’ designer.

First, we should identify and extract features of given components and build a component feature
matrix. The components may have different feature dimensions, e.g., syntactical (based on component
source code properties) or semantic (based on functionality of the components).

We have examined two large groups of component features:

• Syntactical features are based on 14 common software metrics: 1) LOC (Lines of Code) – a count
of each line that has any code element, 2) eLOC (Effective LOC) – count of code statements, 3)
lLOC (Logical Statements LOC), 4) Interface Complexity (number of parameters), 5) Interface
Complexity (number of returns), 6) Cyclomatic Complexity –the number of linearly independent
paths through a program’s source code, 7) Number of public, private, protected data attributes, 8)
Number of public, private, protected methods, 9) Number of loops, 10) Number of conditional
branches, 11) Number of memory allocation statements, 12) Number of parenthesis, 13) Number
of braces, 14) Number of brackets.

• Semantic features are based on 6 identified functional, dataand class type parameters: 1) Element
type ={Byte, Char, Float, Int, Long, Short, String}; 2) Memory allocation scheme ={non-direct,
direct, not-specified}; 3) Byte ordering ={native, non-native, Big Endian, Little Endian, not spec-
ified}; 4) Access mode ={read-only, writable}; 5) Content ={Byte, Char, File, Float, Int, Long,
Short}; 6) Class type ={Abstract, Final}.

Based on the selected component feature dimensions, the Buffer library classes were analyzed and
feature matrices were built (74× 14 matrix for syntactical features and 74× 6 matrix for semantic
features). As the can see, we have 14D feature space in the first case, and 6D feature space in the second
case, which both are difficult to comprehend and analyze.

We have applied MDS on each of the matrices to obtain a 2D projection of the feature space. The
result in both cases is a 74× 2 matrix, which is interpreted as the coordinates of 74 points on a 2D plane.
The results are depicted graphically in Figure 1 and Figure 2(each dot represents a different Buffer class
on the 2D projection of its feature space).

As we can visually see from Figure 1, no clusters could be identified. Thus, we can state that MDS
using syntactical features has failed. We do not provide stress values for different distance metrics
and stress criteria, as they no longer present an interest here. We can explain the result as follows.
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R. Damaševičius / Analysis of Components for Generalization using Multidimensional Scaling 515

Figure 1. MDS of Buffer classes using syntactic features (Metric MDS; Euclidean distance metric; STRESS
criterion).

Figure 2. MDS of Buffer classes using semantic features (Metric MDS; Euclidean distance metric; STRESS
criterion).
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Table 2. Stress values and number of clusters for metric MDS and different distance metrics

Stress criterion Euclidean (p=2) City Block (p=1) Minkowski (p=3)

SSTRESS 0.0296 (6 clusters) 0.0157 (3 clusters) 0.0380 (6 clusters)

STRESS 0.0127 (6 clusters) 0.0275 (5 clusters) 0.0298 (3 clusters)

STRESS1 0.1142 (6 clusters) 0.1386 (5 clusters) 0.1607 (3 clusters)

The selection of the component feature dimensions is very important, as the further partitioning of the
component set directly depends upon it. Analysis of components along the feature dimensions that
are not really important for a given component set and designaim does not allow to reveal the hidden
structure and dependability within the analyzed set of components. However, this does not mean that
syntactical features are not important at all. Syntactic features can be used, e.g., to classify software
components based on their implementation language or programming style.

In Figure 2, we can see 6 different clusters, which can be implemented as generic components, and
3 separate classes, which differ significantly from other classes and thus should not be generalized.

Other MDS methods and distance metrics used may produce different projections and consequently
reveal a different number of clusters in the component feature space. Generally, the partitioning that has
the lowest stress value must be selected. We present the stress values for the metric MDS method and
different distance metrics in Table 2.

We estimate the generalizability of the Java Buffer class library according to the Kruskal’s rules-of
thumb [45] as ”excellent” (best stress value< 0.025).

Finally, we partition the Buffer library based on the MDS results obtained in the semantic feature
space. Using this partitioning, we can develop 6 different generic components:

1. Generic buffer (includes 7 user-accessible buffer classes at Level 1);

2. Generic heap buffer (includes 14 classes);

3. Generic direct buffer with non-native byte ordering (includes 14 classes);

4. Generic direct buffer with native byte ordering (includes 12 classes);

5. Generic byte buffer with Big Endian (includes 12 classes);

6. Generic byte buffer with Little Endian (includes 12 classes).

Note that 3 classes are too different and remain stand-alone(i.e., these classes should not be gener-
alized).

5.2. Java Geom package

Java Geom package is a part of JDK 1.5 class library (package java.awt.*), which describes 2D geometric
shapes such as lines, ellipses, and quadrilaterals. The Geom library has 25 classes and interfaces for
describing 2D geometric forms, shapes and figures, and for defining and performing operations on objects
related to two-dimensional geometry. Some important features of the package include:

• Classes for manipulating geometry, such as AffineTransformand the PathIterator interface which
is implemented by all Shape objects;
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• Classes that implement the Shape interface, such as Ellipse2D, Line2D, and Rectangle2D;

• The Area class, which provides mechanisms for add (union), subtract, intersect, and eXclusiveOR
operations on other Shape objects.

The Geom package also contains similar classes and many ”look-alike” GetandSetclass methods,
which makes it difficult to manage and maintain. Also component selection and reuse is difficult. Our
aim is to discover clusters of similar component that are most similar and are primary candidates for
redundancy elimination and generalization. Since the package classes have many feature dimensions
(syntactic, semantic), here we apply a method for evaluating similarity of software components, which
is independent of their syntax and semantics: a similarity metric based on Kolmogorov Complexity [24].

Kolmogorov Complexity measures the information content ofan object by the length of the smallest
program that generates it. In general case, we have a domain object x and a description system (e.g.,
programming language)φ that maps from a descriptionw (i.e., a program) to this object. Kolmogorov
ComplexityKφ(x) of an objectx in the description systemφ is the length of the shortest program in the
description systemφ capable of producingx on a universal computer:

Kφ(x) = minω{‖ω‖ : φω = x} (12)

Kolmogorov ComplexityKφ(x) is the minimal quantity of information required to generatex by an
algorithm, and is the ultimate lower bound of information content. Unfortunately, it cannot be computed
in the general case and must be approximated. Usually, compression algorithms are used to give an upper
bound to Kolmogorov Complexity. Suppose that we have a compression algorithmCi. Then, a shortest
compression ofω in the description systemφ will give the upper bound to information content inx:

Kφ(x) ≤ mini{Ci(φω)} (13)

Based on the definition of Kolmogorov Complexity (Eq. 12) andits approximation (Eq. 13), we can
define a similarity metric for two programsx andy as a ratio of shared information content:

s(x, y) = 1 −
C(x · y)

C(x) + C(y)
, (14)

wherex · y is a concatenation ofx andy.
Using Eq. 14 we can examine each pair of the components of Geompackage, thus arriving to a

25× 25 component similarity matrix. This matrix represents a 25D feature space, which is difficult to
comprehend and analyze. For visualization of component similarity we have applied MDS to obtain a
2D projection of the feature space. The result is a 25× 2 matrix, which is interpreted as the coordinates
of 25 points (classes) on a 2D plane. The results are depictedgraphically in Figure 3 (each dot represents
a different Geom class on the 2D projection of its feature space). Stress value is 0.064, which allows to
estimate the generalizability of the Geom class package according to the Kruskal’s rules-of thumb [45]
as ”good” (0.05< stress< 0.1).

In Figure 3 we can see a relative distance of the Geom package classes. The classes that are more
similar are located closer to each other. To have a more detailed view we can use a dendrogram of the
Geom classes (see Figure 4 classes are identified by their index numbers given in Table 3). After analysis,
we can identify 7 different clusters, which can be implemented as generic components (Table 3).
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Figure 3. MDS of Geom classes using syntactic features (Metric MDS; Euclidean distance; STRESS criterion).

Figure 4. Dendrogram of Geom library.
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Table 3. Summary of clusters of classes in Geom library

Cluster No.
of
classes

Classes and their indices (in
brackets)

Description

1 4 AffineTransform (1), Arc2D (2),
Line2D(14), Rectangle2D(21)

AffineTransform performs a linear mapping from
2D coordinates to other 2D coordinates. Arc2D
and Line2D define 2D arcs and lines, respectively.
Rectangle2D defines a rectangle.

2 2 CubicCurve2D (5), Quad-
Curve2D (19)

CubicCurve2D and QuadCurve2D implement cu-
bic and quadratic curves that connect two points.

3 4 Ellipse2D (8), Point2D (18), Rect-
angularShape (22), RoundRectan-
gle2D (24)

Ellipse2D and RectangularShape classes describe
shapes whose geometry is defined by a rectangular
frame. RoundRectangle2D defines a round rectan-
gle. Point2D class defines a point in 2D space.

4 3 Area (4), FlatteningPathItera-
tor(10), GeneralPath (11)

Area represents an arbitrarily-shaped area. Gen-
eralPath represents a path constructed from lines,
quadratic and cubic curves. FlatteningPathIterator
returns a flattened view of PathIterator object.

5 3 Dimension2D (7), Path2D (16),
LineIterator (13)

Dimension2D encapsulates a width and a height di-
mension. Path2D provides a shape which repre-
sents an arbitrary geometric path. LineIterator it-
erates over the path segments of a line segment.

6 7 ArcIterator (3), EllipseIterator (9),
CubicIterator (6), QuadIterator
(20), PathIterator (15), RectItera-
tor (23), RoundRectIterator (25)

The Iterator classes return the geometry of shapes
by allowing a caller to retrieve the path of boundary
a segment at a time.

7 2 GeneralPathIterator (17), Illegal-
PathStateException (12)

GeneralPathIterator provides interfaces to Iterator
classes. IllegalPathStateException represents an
exception that is thrown if an operation is per-
formed on a path that is in an illegal state.

6. Evaluation of results and conclusions

In this paper, we propose to use a mathematical MDS method forthe analysis of the component feature
space systematically, which allows to partition the set of software components into subsets (clusters)
of similar components. The identified clusters of similar software components can be further used as
primary candidates for generalization in generic component design. Similarity can be understood as syn-
tactic similarity of source code or semantic similarity of components, depending upon analyzed compo-
nent features. Thus, the method provides for more flexibility and adaptability to the software designer’s
needs. Similarity of components in component feature spaceis estimated using several distance metrics.
The generalizability of the given component set is estimated using stress criteria.
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The proposed feature-based component analysis method allows to solve Problems 1, 2, 3 & 6 of com-
ponent analysis for generalization presented in Section 2.It allows 1) to identify software components
within the available set of components that are more similarto each other than to other members of the
component set; 2) to determine the number of generic components required to design a reuse library that
covers the given set of components; and 3) to evaluate the generalizability of the given set of software
components. The proposed method can be used to aid the development of generic component libraries
or re-engineering of legacy component libraries.
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