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Abstract. To achieve better software quality, to shorten softwaresltgpment time and to lower
development costs, software engineers are adopting gesmerause as a software design process.
The usage of generic components allows increasing reusedesign productivity in software en-
gineering. Generic component design requires systemaiiad analysis to identify similar com-
ponents as candidates for generalization. However, coemidrature analysis and identification
of components for generalization usually is datehoc In this paper, we propose to apply a data
visualization method, called Multidimensional Scaling¥d), to analyze software components in
the multidimensional feature space. Multidimensionahdhtt represent syntactical and semantic
features of source code components are mapped to 2D spazeediits of MDS are used to parti-
tion an initial set of components into groups of similar sucode components that can be further
used as candidates for generalization. STRESS value istasestimate the generalizability of a
given set of components. Case studies for Java Buffer anth@tass libraries are presented.

Keywords: componentbased software engineering, feature engimggeomain analysis, software
similarity, generalization, multidimensional scaling

1. Introduction

Component-based software engineering (CBSE) aims at alenre software development costs and
time-to-market by building software systems from prefeded building blocks (components) [1]. CBSE
focuses on software reuse, i.e., the use of existing agifac the construction of software. Reuse cannot
be achieved without some form of generalization [2].
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Generalization is a form of knowledge representation theéms a transition from narrow and spe-
cific principles and concepts to the wider and more generas.oA higher, more generalized, level of
domain knowledge encapsulates an understanding of theajgmeperties and behavior possessed by a
subset of its domain entities. Introduction of generalmatisually means transition to the higher level
of abstraction, where domain knowledge can be represemgaxplained more comprehensibly and
effectively. Thus, generalization allows introducing maimplicity into the domain. In computer sci-
ence, generalization is usually understood as a technifjwélening of an object (component, system)
in order to encompass a larger domain of objects (systenplications) of the same or different type.
Generalization is mainly used for developing reusableasift components and reuse libraries [3, 4, 5].

A prerequisite for generalization is to identify similgrifother terms used in the literature are com-
monality, resemblance, proximity) among a set of domaiitieat The commonality may refer to essen-
tial features of a software component such as attributegloabor, or may concern only similarity in
description, code repetition, duplication, cloning oruedancy. Commonalties may be introduced into
programs for a variety of reasons such as rapid softwarela@@awent using copy-and-paste technique,
reuse of widely used code fragments for reliability, poosige practices oad hocmaintenance. Thus,
separation and identification of common and variable corgcigrthe domain is a step towards achieving
generalization.

Program similarity and its detection is a core concept itv&fe evolution and maintenance [6, 7],
code clone and redundancy detection [8, 9], program comijore$10], malware analysis [11], plagia-
rism and copyright infringement detection [12, 13], andalegsystem reengineering [14, 15]. Program
similarity is also important for solving library scalinggiiem [16]. Discovering and understanding pro-
gram similarity allows for efficient development of new comnent architectures and systems [17] and
for well-organized maintenance of existing systems [18].

Exploiting similarity and managing differences (vari@jl in software a key success factor in soft-
ware product lines [18]. A key aspect of software similaritgnagement is the discovery, explicit repre-
sentation and modeling of similarity. Similarity revedkseif on different stages of software development
process such as requirement formulation (e.g., featureetspéutomated application development (e.g.,
program generators, metaprograms [19]), system architsct(e.g., design patterns), implementation
constructs (e.g., templates, parameters). However, thestill lack of understanding among software
developers that all these aspects of program similarityedeged and must be managed explicitly.

Program similarity can be defined in terms of the form, prideeror characteristics of program rep-
resentation. Here program representation is understoageguence of source code characters forming
a more complex text structure. We distinguish between &xtinaracteristics-based, feature-based and
information-based similarity:

e Textual similaritycan be evaluated using string comparison measures suclversdhéein distance
or longest common sequence (for a review, see [9]).

e Characteristics-based similarigvaluates abstract characteristics of source code sucteaelnt,
McCabe’s cyclomatic complexity, or Halstead metric [20].21

e Feature-based similaritgvaluates the amount of correspondence between specifictagy pro-
grams such as the list of identifiers [22] or business elesi@3i.

¢ Information-based similaritygvaluates the amount of information shared between tworanog
using information-theoretic metrics such as Kolmogoromptexity [24] or conditional entropy.
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Another taxonomy of program similarity types can be foun{lii. Similarity also can be explored
along different "levels” of abstraction, which correspaiadthe levels of abstraction in programs. For
example, we could examine similarity at statement, blodss; unit, or architectural levels.

A family of similar components can be generalized into a gensomponent. Members of such
family share the same commonalities and have the relatéabildy. The usage of generic components
increases reuse and design productivity in software engimg because specific components can be de-
rived at any time by specialization or instantiation. Thecass of generalization and generic component
design largely depends upon domain analysis.

Several domain analysis methods, in one way or anotheridmrsmponent generalization such as
Multi-Dimensional Separation of Concerns [26], FODA [2T]RAST [28] (for a review, see [29]). The
common aim of domain analysis methods is to construct orénga reusable (generic) component, or to
populate reusable component libraries. All these domaatyais methods perform analysis for general-
izationad hoc The designer analyzes available components or/and dssape, builds feature/concern
tables, separates commonalities and variabilities, aed tne results of analysis for developing generic
components. The analysis process is heuristic. Given tine s&t of components, other designers can
select other components and features for generalizatiorevilluation is given on the quality of selected
partition of a component set and the extent of generalizatio

The novelty of this paper is as follows. We propose to use énemaatical method, called Mul-
tidimensional Scaling (MDS), for visualizing multidimeasal software component feature space and
identifying clusters of similar components as candidategy&neralization.

The remaining parts of the paper are as follows. Sectionrdtates the main problems of compo-
nent analysis for generalization. Section 3 presents & theiecription of the MDS method. Section 4
describes application of MDS for component analysis. 8adipresents the experimental validation of
the approach for Java Buffer and Geom libraries. Finallgti8e 6 presents the evaluation of results and
conclusions.

2. Main problems of component analysis for generalization

We formulate the main problems of component analysis foegdization as follows:

1. How to identify similar components amongst the availableo§&omponentsZeneric compo-
nents capture commonalities in the domain. The more theresianilarities between the gener-
alized components, the better generalization can be ahievhich ultimately allows for better
component reuse, library scaling and maintenance.

2. How many generic components we should desigv&’can design one large generic component,
which generalizes all available components for gener@dizaand has many different parameters.
However, such generic component may be difficult to comprétand to handle, and it may be
over-generalized. Alternatively, we may design severali@ngeneric components, which better
capture commonalties in a domain, and are more scalableegpwhdable.

3. How to partition a set of components into subsets, each feryegeneric componentRifferent
partitioning of a component set may lead to different quardf generic components developed
and may increase or decrease the designer’s effort for gligagion. Unsuccessful partitioning
may lead to unsuccessful generalization and un-usablesfusable) generic components.
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4. How to determine a set of parameters for generalization afponentsDifferent software com-
ponents may have distinct features. The generic componesit reflect all features of the com-
ponents it generalizes. Smaller number of parameters niestes comprehensibility and easier
maintenance, and leads to higher reusability.

5. How to separate dependable and undependable parameteenefig componentsThe depen-
dency relationships between parameters may be a probldimefdesigner. They can be difficult to
identify and the available metalanguage (i.e., a language tor describing generic components)
may not support specification of dependant parameters.

6. How to measure the extent of generalizatioB@veral metrics can be used to measure the extent
of generalization such as: the number of generic paramdtesnumber of instances that can
be generated from a generic component, or the amount of @edecode [30]. Though all these
metrics may be useful, they do not take thsality of generalization into account. If a generic
component has too many generic parameters, it may causedhgeneralization problem. Not
all generated instances may be required or useful. Mucheottlle generated from a generic
component may be redundant. Thus, there is a need for a ntletticdlescribes the extent of
generalization and is domain-independent.

The existing domain analysis methods do not provide a canemgble solution to these problems.
Thus, a combination of various, usually heuristic, methisdssually used. Component similarity is
usually determined heuristically, based on their "lookeiess” [31]. The partitioning of a set of initial
components for generalization is often described as ‘Hjbsaaling” problem [16]. Some authors prefer
a small number of large, "coarse-grained” generic comptn@2], while others argue that better reuse
can be achieved using a large number of small, flexible, madelywapplicable “fine-grained” generic
components [33]. The parameters of a generic componenthaidrelationships are modeled using
feature models [34, 19]. The success of generalizationakiated by measuring the reuse metrics of the
developed generic components [35], which in many cases maydaningless or uninformative.

We argue that the MDS method can be used as a step towarddutiersof these domain analysis
problems. In next Section, we present a brief introductida the MDS method.

3. Introduction to Multidimensional Scaling

Multidimensional Scaling (MDS) [36, 37] is a mathematicatthod to map complex multidimensional
data into lower-dimensional space, which allows easietyaizaof data. MDS is used in the similar
context to analyze and visualize document collections, [@88labases [39], web pages [40], as well as
for document categorization [41], text mining [42], knoddge discovery [43] and clustering software
for change [44].

Suppose we, have a set of objects characterized by a numbestofes and that a measure of the
similarity between objects is known. This measure indiedtew similar or dissimilar two objects are.
Since the number of object features can be very large, sughoda be very difficult to analyze and
visualize, unless the data can be represented in a smaittdyarof dimensions. Some sort of dimension
reduction is usually necessary.

MDS maps the high-dimensional data into a lower-dimengispace, in which each object is repre-
sented by a point and the distances between points resenebbeiginal similarity information; i.e., the
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larger the dissimilarity between two objects, the farthgarathey should be in the lower dimensional
(usually 2D) space. A mapping from a multidimensional sga@e2D space ensures some similarity be-
tween the structure of an original data and of its image. §@metrical configuration of points reflects
the hidden structure of the data and may help to make it etasigrderstand.

Further, we consider only metric MDS, in which distancesmeein objects in multidimensional
space are related to their dissimilarities linearly. Diskirity between elements in a vector space can be
measured by a norm of their difference, i.e. by a distanocedwt the corresponding points.

Let X; € R« = 1,..,k be the data intended to visualize. We are searching for afsgico
dimensional pointy; € R?, i = 1, ..,k whose inter-point distancek; (Y') well approximate the inter-
point distances;; = || X; — Xj||.

A distance in the multidimensional original space can besitiared as a measure of dissimilarity,
and it is defined by a corresponding norm. The most widely msedh is the Euclidean norm defining
distance betweeX; and X; by the formula

5@']’ = Z(xzr - xjr)Q 1)

WhereXZ- = ((L‘ﬂ, . .’L‘in)T.
The Minkowski metric is a generalization of the Euclideantnoe The corresponding distance is
defined by formula:

k
1
5z‘j = \ E |~’Cz'r —Cﬂjr|p} p (2)
r=1

A special case of Minkowski metrig = 1 is the so called City Block metric:

k
0ij = Y _|wir — 2| ®3)
r=1

A mapping is precisely preserving the structure of a dataifséte distances between the original
points and the distances between their lower-dimensianabés are equal. Practically, we want to
minimize an error of approximation of the distances in thiginal space by the distances in the lower-
dimensional space. This error is estimated by a measureodigss-of-fit, often called "stress”, between
the configuration distancek; and the dissimilarities. A range of formulas for this meassrused:

k k
STRESS :s= > Y wij(di(Y) - 6i;)? )
i=1 j=i+1
P& wi(di(Y) - 6)?
STRESS1:s= > Y = ()
i=1 j=i+1 L)
k k
SSTRESS : s = Z Z wij(di(Y) — 5%)2 (6)
i=1 j=i+1

wherew;; > 0 are weights.

www.manaraa.com



512 R. Damasevicius / Analysis of Components for Generatizatsing Multidimensional Scaling

There is no definite rule to determining, which stress vale loe judged as representing good or
poor goodness-of-fit. Kruskal [45] provided the followingules-of thumb” for STRESS1 values as
follows: 0 — perfect, 0.025 — excellent, 0.05 — good, 0.1 # fai0.2 poor.

In next Section, we describe the application of MDS for amialy multidimensional component
feature space and uncovering clusters of similar compsrfengeneralization.

4. Component domain analysis for generalization based on MB

First, we begin with some basic definitions as follows:
Definition 1: Component; is an object uniquely characterized by a set of its featlireSomponent
can be represented as a point in a n-dimensional feature $pas follows:

Cj:(fi7f27--7fn)7fiEF,CJ‘GC (7)
Definition 2: Featuref; is a computable metric of a componeft

fi= el (8)
Definition 3: Similarity between two components andc; is defined as a distandebetween two
points in a multidimensional feature space:

m

S(ej en) = | > (fir — Fir)? (9)

r=1

Definition 4: Cluster of componentg( is a group of similar components separated by a small
distance.

K ={cj,..,c},0(cj, cx) < const (10)

for each pair of components in clust&r.
Definition 5: Generalizabilityg of a set of componentS' is evaluated using a stress criterion.

g = stress(C) (11)

We propose the following procedure based on the applicaifadhe MDS method for performing
analysis of components for generalization and identifygimgups (clusters) of similar components as
prime candidates for generalization:

1. Identify a set of components available for generalization.

2. ldentify a set of featureg’ of each component. The features may be extracted from coanpon
source code, feature models or domain business modelddgptthesaurus) using visual inspec-
tion, domain analysis tools (e.g., parsers) and may inchyaheactical features that characterize
the source code of components or semantic features thatatbare the functionality (behavior)
of a component.

3. Build a component feature matri¥ (componentx feature). The feature matrix must include at
least 6 features. It represents a set of points in a multidgioaal feature space.
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Table 1. Summary of Buffer class library

Level Feature dimension Features No. of classes
1 buffer data element type byte, char, int, float double, long, short 7
2 memory allocation scheme direct, non-direct 35
byte ordering native, non-native, Big endian, Little endian
3 access mode writable, read-only 32

4. Digitize a feature matrix. The numerical values for natlanguage descriptions of features, if
any, must be provided.

5. Select a distance metidqsee Eqg. 9) to measure the dissimilarity between compoieitampo-
nent feature space. Commonly used metrics are Euclideanl(Ed/linkowski (Eq. 2) and City
Block (Eqg. 3), though there are others, too.

6. Select a stress criterion (see Eq. 4, 5 or 6) that estintlaéesrror of the mapping between the
multidimensional feature space and its 2D image.

7. Perform MDS on a feature matrix to obtain its 2D projectaml a stress value.

8. Identify clusters in the 2D projection. ldentificationusually performed by visual inspection of
the 2D projection.

9. Use clusters of components to build generic componetis.ntimber of identified clusters deter-
mines the number of generic components.

10. Evaluate generalizability using stress value. Smattesss value means more successful partition-
ing of the initial component set into clusters of similar qmnents and, consequently, provides
more capabilities for generalization.

In the following Section, we present the experimental \alwh of the proposed MDS-based com-
ponent analysis framework.

5. Experimental validation of the proposed method

5.1. Java Buffer library

Buffer library is a part of JDK 1.5 class library (packagegano.*). Buffer library contains 74 classes

describing different buffers. Below, we briefly describatfees of the Buffer classes and explain how
those features are reflected in Buffer classes (for a moensixe description, see [46]). The class
hierarchy of the Buffer library is organized in 3 levels alidws (Table 1):

e At Level 1, there are 7 classes that differ in buffer elemestadypes. These classes contain
methods for providing access to buffer functionalities liempented in the classes at Level 2.

e AtLevel 2, classes implement 2 memory allocation schemiescfginon-direct) and 4 types of byte
orderings (native, non-native, Little Endian and Big Emdlia20 classes result from combining
memory access and byte ordering features, excluding M&gypeBuffer class, which is just a
helping class. Also there are 7 heap classes that implemmemkin-direct memory access scheme
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for a buffer. Classes with suffixes 'U’ and 'S’ implement ditenemory access scheme with
native and non-native byte ordering, respectively. Thsrerily one class DirectByteBuffer, as
byte ordering does not matter for byte buffers.

e At Level 3 in the class hierarchy, classes implement diffeeecess modes. In total, 25 classes at
Level 3 implement the read-only variants of buffers.

The Buffer library contains many "look-alike” componentidahas a great deal of redundancy. It is
difficult to manage and maintain. Also component selectioth r@use is difficult. Developing a smaller
number of generic components, which allows for easier daksction via parameters, more convenient
maintenance and elimination of unnecessary redundanagyg, dbntributing to higher reusability, can
solve these problems. However, the Buffer library comptsméave multiple features alongside many
dimensions, their features depend upon each other, andhyartitioning of components for general-
ization is not an easy task. We formulate our aim as the ifilestion of clusters of similar component
that are most susceptible for generalization, thus aliegjahe work of a generic components’ designer.

First, we should identify and extract features of given comgnts and build a component feature
matrix. The components may have different feature dimessie.g., syntactical (based on component
source code properties) or semantic (based on functigradlithe components).

We have examined two large groups of component features:

e Syntactical features are based on 14 common software $1el)it. OC (Lines of Code) — a count
of each line that has any code element, 2) eLOC (Effective 1. ©€ount of code statements, 3)
ILOC (Logical Statements LOC), 4) Interface Complexity rither of parameters), 5) Interface
Complexity (number of returns), 6) Cyclomatic Complexitthe number of linearly independent
paths through a program'’s source code, 7) Number of pubficate, protected data attributes, 8)
Number of public, private, protected methods, 9) Numberopk, 10) Number of conditional
branches, 11) Number of memory allocation statements, UuB)id¢r of parenthesis, 13) Number
of braces, 14) Number of brackets.

e Semantic features are based on 6 identified functional,adatalass type parameters: 1) Element
type ={Byte, Char, Float, Int, Long, Short, String2) Memory allocation scheme fnon-direct,
direct, not-specifiegt 3) Byte ordering ={native, non-native, Big Endian, Little Endian, not spec-
ified}; 4) Access mode Fread-only, writablg; 5) Content ={Byte, Char, File, Float, Int, Long,
Short}; 6) Class type {Abstract, Fina}.

Based on the selected component feature dimensions, ttierBibfary classes were analyzed and
feature matrices were built (74 14 matrix for syntactical features and %46 matrix for semantic
features). As the can see, we have 14D feature space in thesfies and 6D feature space in the second
case, which both are difficult to comprehend and analyze.

We have applied MDS on each of the matrices to obtain a 2D gtiofe of the feature space. The
result in both cases is a 342 matrix, which is interpreted as the coordinates of 74 gaamta 2D plane.
The results are depicted graphically in Figure 1 and Figyea2h dot represents a different Buffer class
on the 2D projection of its feature space).

As we can visually see from Figure 1, no clusters could betifilesh. Thus, we can state that MDS
using syntactical features has failed. We do not providesstvalues for different distance metrics
and stress criteria, as they no longer present an interest W&e can explain the result as follows.
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Figure 1. MDS of Buffer classes using syntactic featurest(idéViDS; Euclidean distance metric; STRESS
criterion).

Figure 2. MDS of Buffer classes using semantic features (ig1&DS; Euclidean distance metric; STRESS
criterion).

www.manaraa.com




516

Table 2. Stress values and number of clusters for metric MiiSd#ferent distance metrics

R. Damasevicius / Analysis of Components for Generatizatsing Multidimensional Scaling

Stress criterion

Euclidean (p=2)

City Block (p=1)

Minkowski (p=3)

SSTRESS

0.0296 (6 clusters)

0.0157 (3 clusters)

0.0380 (6 clusters)

STRESS

0.0127 (6 clusters)

0.0275 (5 clusters)

0.0298 (3 clusters)

STRESS1

0.1142 (6 clusters)

0.1386 (5 clusters)

0.1607 (3 clusters)

The selection of the component feature dimensions is veppitant, as the further partitioning of the
component set directly depends upon it. Analysis of comptenalong the feature dimensions that
are not really important for a given component set and deaigndoes not allow to reveal the hidden
structure and dependability within the analyzed set of camepts. However, this does not mean that
syntactical features are not important at all. Syntactiduiees can be used, e.g., to classify software
components based on their implementation language oramroging style.

In Figure 2, we can see 6 different clusters, which can beémphted as generic components, and
3 separate classes, which differ significantly from othassks and thus should not be generalized.

Other MDS methods and distance metrics used may produezatiff projections and consequently
reveal a different number of clusters in the component featpace. Generally, the partitioning that has
the lowest stress value must be selected. We present tlss stakies for the metric MDS method and
different distance metrics in Table 2.

We estimate the generalizability of the Java Buffer classaty according to the Kruskal's rules-of
thumb [45] as "excellent” (best stress valkied.025).

Finally, we partition the Buffer library based on the MDSuks obtained in the semantic feature
space. Using this partitioning, we can develop 6 differemteagic components:

1. Generic buffer (includes 7 user-accessible buffer eklass$ Level 1);
Generic heap buffer (includes 14 classes);

Generic direct buffer with non-native byte ordering (intes 14 classes);
Generic direct buffer with native byte ordering (incledg classes);
Generic byte buffer with Big Endian (includes 12 classes)

Generic byte buffer with Little Endian (includes 12 cless

o 0 A~ wNN

Note that 3 classes are too different and remain stand-diamethese classes should not be gener-
alized).

5.2.

Java Geom package is a part of JDK 1.5 class library (packagesjwvt.*), which describes 2D geometric

shapes such as lines, ellipses, and quadrilaterals. Thm Glexary has 25 classes and interfaces for
describing 2D geometric forms, shapes and figures, and fiinig and performing operations on objects

related to two-dimensional geometry. Some important festof the package include:

Java Geom package

¢ Classes for manipulating geometry, such as AffineTranstmdhthe Pathlterator interface which
is implemented by all Shape objects;
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e Classes that implement the Shape interface, such as Rlipsene2D, and Rectangle2D;

e The Area class, which provides mechanisms for add (uniom}ract, intersect, and eXclusiveOR
operations on other Shape objects.

The Geom package also contains similar classes and markdld@” Getand Setclass methods,
which makes it difficult to manage and maintain. Also compurselection and reuse is difficult. Our
aim is to discover clusters of similar component that aretrsogilar and are primary candidates for
redundancy elimination and generalization. Since the ggelclasses have many feature dimensions
(syntactic, semantic), here we apply a method for evalgatimilarity of software components, which
is independent of their syntax and semantics: a similargyrimbased on Kolmogorov Complexity [24].

Kolmogorov Complexity measures the information conterdarobbject by the length of the smallest
program that generates it. In general case, we have a dorbpicte and a description system (e.qg.,
programming language) that maps from a description (i.e., a program) to this object. Kolmogorov
Complexity {4 (x) of an objectz in the description system is the length of the shortest program in the
description system capable of producing on a universal computer:

Ky(x) = min{|lw] : oo =z} (12)

Kolmogorov ComplexityK 4 (x) is the minimal quantity of information required to generatey an
algorithm, and is the ultimate lower bound of informatiomtamt. Unfortunately, it cannot be computed
in the general case and must be approximated. Usually, @ssipn algorithms are used to give an upper
bound to Kolmogorov Complexity. Suppose that we have a cesgion algorithnC;. Then, a shortest
compression ob in the description system will give the upper bound to information contentan

Based on the definition of Kolmogorov Complexity (Eqg. 12) @ésdapproximation (Eq. 13), we can
define a similarity metric for two programsandy as a ratio of shared information content:

s(z,y)=1-— (14)
wherex - y is a concatenation aof andy.

Using Eq. 14 we can examine each pair of the components of Gemkage, thus arriving to a
25 x 25 component similarity matrix. This matrix represents ® 28ature space, which is difficult to
comprehend and analyze. For visualization of componeritasity we have applied MDS to obtain a
2D projection of the feature space. The result is a«2% matrix, which is interpreted as the coordinates
of 25 points (classes) on a 2D plane. The results are depictgdhically in Figure 3 (each dot represents
a different Geom class on the 2D projection of its featureespaStress value is 0.064, which allows to
estimate the generalizability of the Geom class packagerdicg to the Kruskal's rules-of thumb [45]
as "good” (0.05< stress< 0.1).

In Figure 3 we can see a relative distance of the Geom packagses. The classes that are more
similar are located closer to each other. To have a moreleigtaiew we can use a dendrogram of the
Geom classes (see Figure 4 classes are identified by thek manbers given in Table 3). After analysis,
we can identify 7 different clusters, which can be implenadrds generic components (Table 3).
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Figure 3. MDS of Geom classes using syntactic features (MetDS; Euclidean distance; STRESS criterion).
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Figure 4. Dendrogram of Geom library.
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Table 3. Summary of clusters of classes in Geom library

Clusterl No. Classes and their indices (in| Description

of brackets)
classes

1 4 AffineTransform (1), Arc2D (2),| AffineTransform performs a linear mapping from

Line2D(14), Rectangle2D(21) 2D coordinates to other 2D coordinates. Arc2D
and Line2D define 2D arcs and lines, respectively.
Rectangle2D defines a rectangle.

2 2 CubicCurve2D (5), Quad-| CubicCurve2D and QuadCurve2D implement cl-
Curve2D (19) bic and quadratic curves that connect two points.

3 4 Ellipse2D (8), Point2D (18), Rect-| Ellipse2D and RectangularShape classes descfibe
angularShape (22), RoundRectan- shapes whose geometry is defined by a rectangular
gle2D (24) frame. RoundRectangle2D defines a round rectan-

gle. Point2D class defines a point in 2D space.

4 3 Area (4), FlatteningPathltera; Area represents an arbitrarily-shaped area. Gen-
tor(10), GeneralPath (11) eralPath represents a path constructed from lines,

guadratic and cubic curves. FlatteningPathlterator
returns a flattened view of Pathlterator object.

5 3 Dimension2D (7), Path2D (16); Dimension2D encapsulates a width and a height di-
Linelterator (13) mension. Path2D provides a shape which repye-

sents an arbitrary geometric path. Linelterator |t-
erates over the path segments of a line segment,

6 7 Arclterator (3), Ellipselterator (9),| The Iterator classes return the geometry of shapes
Cubiclterator (6), Quadlterator by allowing a caller to retrieve the path of boundaty
(20), Pathlterator (15), Rectlterat a segment at a time.
tor (23), RoundRectlterator (25)

7 2 GeneralPathlterator (17), lllegal: GeneralPathlterator provides interfaces to Iterator
PathStateException (12) classes. lllegalPathStateException represents| an

exception that is thrown if an operation is per-
formed on a path that is in an illegal state.

6. Evaluation of results and conclusions

In this paper, we propose to use a mathematical MDS methatthiéaanalysis of the component feature

space systematically, which allows to partition the setaffwgare components into subsets (clusters)
of similar components. The identified clusters of similaftware components can be further used as
primary candidates for generalization in generic compbdesign. Similarity can be understood as syn-
tactic similarity of source code or semantic similarity ohgponents, depending upon analyzed compo-
nent features. Thus, the method provides for more flexjtdlitd adaptability to the software designer's

needs. Similarity of components in component feature sigaegtimated using several distance metrics.
The generalizability of the given component set is estichatgng stress criteria.
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The proposed feature-based component analysis methedatsolve Problems 1, 2, 3 & 6 of com-
ponent analysis for generalization presented in Sectidh&lows 1) to identify software components
within the available set of components that are more similazach other than to other members of the
component set; 2) to determine the number of generic conmpemequired to design a reuse library that
covers the given set of components; and 3) to evaluate therglerability of the given set of software
components. The proposed method can be used to aid the pieesib of generic component libraries
or re-engineering of legacy component libraries.
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